Advertisement
Oral medicine| Volume 111, ISSUE 2, P196-204, February 2011

Download started.

Ok

Bisphosphonates inhibit phosphorylation of signal transducer and activator of transcription 3 and expression of suppressor of cytokine signaling 3: implications for their effects on innate immune function and osteoclastogenesis

      Objective

      This study tested the effects of bisphosphonates (BPs) on the suppressor of cytokine signaling 3 (SOCS3) protein in macrophages. SOCS3 has been shown to regulate cell differentiation and survival; however, its potential role in mediating the effects of BPs has not been explored.

      Study design

      The cell viability of murine RAW 267.4 macrophages was assessed after culturing with control medium or media containing increasing concentrations of 2 BPs (ibandronate or clodronate) for 24, 48, and 72 hours. The phosphorylation status of signal transducer and activator of transcription 3 (STAT3) and the expression of SOCS3 protein levels were determined by Western blot analysis.

      Results

      In control cultures, STAT3 phosphorylation and STAT3 and SOCS3 protein levels increased within 5 minutes after the addition of fresh medium. This increase was inhibited in cultures treated with both BPs. Macrophage cell viability also decreased after BP treatment.

      Conclusions

      These data demonstrate that, in addition to their effects on macrophage viability, BPs can decrease STAT3 and SOCS3 expression, which are important modulators of immune responses and bone homeostasis.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Rotjanapan P.
        Effect of zoledronic acid on bone pain secondary to metastatic bone disease.
        Med Health R I. 2009; 92: 27-29
        • Osanai T.
        • Tsuchiya T.
        • Sugawara M.
        Rapid pain relief and marked sclerotic change of multiple bone metastases from a synovial sarcoma after treatment with intravenous pamidronate and chemotherapy.
        J Orthop Sci. 2009; 14 ([PubMed]): 224-227
        • Mert T.
        • Gunay I.
        • Ocal I.
        • Guzel A.I.
        • Inal T.C.
        • Sencar L.
        • et al.
        Macrophage depletion delays progression of neuropathic pain in diabetic animals.
        Naunyn Schmiedebergs Arch Pharmacol. 2009; 379 ([PubMed]): 445-452
        • Costa L.
        • Major P.P.
        Effect of bisphosphonates on pain and quality of life in patients with bone metastases.
        Nat Clin Pract Oncol. 2009; 6 ([PubMed]): 163-174
        • Cheng A.
        • Mavrokokki A.
        • Carter G.
        • Stein B.
        • Fazzalari N.L.
        • Wilson D.F.
        • et al.
        The dental implications of bisphosphonates and bone disease.
        Aust Dent J. 2005; 50 ([PubMed]): S4-S13
        • Bamias A.
        • Kastritis E.
        • Bamia C.
        • Moulopoulos L.A.
        • Melakopoulos I.
        • Bozas G.
        • et al.
        Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors.
        J Clin Oncol. 2005; 23 ([PubMed]): 8580-8587
        • Price N.
        • Lipton A.
        • Jain V.K.
        • Ruggiero S.
        Prevention and management of osteonecrosis of the jaw associated with bisphosphonate therapy.
        Support Cancer Ther. 2004; 2 ([PubMed]): 14-17
        • Greenberg M.S.
        Intravenous bisphosphonates and osteonecrosis.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004; 98 ([PubMed]): 259-260
        • Marx R.E.
        Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic.
        J Oral Maxillofac Surg. 2003; 61 ([PubMed]): 1115-1117
        • Carter G.D.
        • Goss A.N.
        Bisphosphonates and avascular necrosis of the jaws.
        Aust Dent J. 2003; 48 ([PubMed]): 268
        • Russell R.G.
        • Rogers M.J.
        • Frith J.C.
        • Luckman S.P.
        • Coxon F.P.
        • Benford H.L.
        • et al.
        The pharmacology of bisphosphonates and new insights into their mechanisms of action.
        J Bone Miner Res. 1999; 14 ([PubMed]): 53-65
        • Rogers M.J.
        • Gordon S.
        • Benford H.L.
        • Coxon F.P.
        • Luckman S.P.
        • Monkkonen J.
        • et al.
        Cellular and molecular mechanisms of action of bisphosphonates.
        Cancer. 2000; 88 ([PubMed]): 2961-2978
        • Derijk R.
        • van Rooijen N.
        • Tilders F.J.
        • Besedovsky H.O.
        • Del R.A.
        • Berkenbosch F.
        Selective depletion of macrophages prevents pituitary-adrenal activation in response to subpyrogenic, but not to pyrogenic, doses of bacterial endotoxin in rats.
        Endocrinology. 1991; 129: 330-338
        • Bergh A.
        • Damber J.E.
        • van Rooijen N.
        Liposome-mediated macrophage depletion: an experimental approach to study the role of testicular macrophages in the rat.
        J Endocrinol. 1993; 136 ([PubMed]): 407-413
        • Camilleri J.P.
        • Williams A.S.
        • Amos N.
        • Douglas-Jones A.G.
        • Love W.G.
        • Williams B.D.
        Methods for assessing splenic macrophage depletion by liposome encapsulated clodronate.
        Inflamm Res. 1995; 44 ([PubMed]): 152-157
        • Dunford J.E.
        • Rogers M.J.
        • Ebetino F.H.
        • Phipps R.J.
        • Coxon F.P.
        Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases.
        J Bone Miner Res. 2006; 21 ([PubMed]): 684-694
        • Rodan G.A.
        • Reszka A.A.
        Bisphosphonate mechanism of action.
        Curr Mol Med. 2002; 2 ([PubMed]): 571-577
        • Bauss F.
        • Schimmer R.C.
        Ibandronate: the first once-monthly oral bisphosphonate for treatment of postmenopausal osteoporosis.
        Ther Clin Risk Manag. 2006; 2: 3-18
        • Vomvas D.
        • Vassiliou V.
        • Papavasileiou D.
        • Kalogeropoulou C.
        • Nicolatou-Galitis O.
        • Kardamakis D.
        Osteonecrosis of the jaw in a patient treated with ibandronate.
        J BUON. 2008; 13 ([PubMed]): 441-442
        • Malden N.J.
        • Pai A.Y.
        Oral bisphosphonate associated osteonecrosis of the jaws: three case reports.
        Br Dent J. 2007; 203 ([PubMed]): 93-97
        • Migliorati C.A.
        • Armonis B.N.
        • Nicolatou-Galitis O.
        Oral osteonecrosis associated with the use of ibandronate: report of a case and clinical implications.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106 ([PubMed]): e18-e21
        • Marx R.E.
        • Sawatari Y.
        • Fortin M.
        • Broumand V.
        Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment.
        J Oral Maxillofac Surg. 2005; 63 ([PubMed]): 1567-1575
        • Barker K.
        • Rogers S.
        Bisphosphonate-associated osteonecrosis of the jaws: a guide for the general dental practitioner.
        Dent Update. 2006; 33 (5 [PubMed]): 270-272
        • Bode J.G.
        • Nimmesgern A.
        • Schmitz J.
        • Schaper F.
        • Schmitt M.
        • Frisch W.
        • et al.
        LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages.
        FEBS Lett. 1999; 463 ([PubMed]): 365-370
        • Cassatella M.A.
        • Gasperini S.
        • Bovolenta C.
        • Calzetti F.
        • Vollebregt M.
        • Scapini P.
        • et al.
        Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation.
        Blood. 1999; 94 ([PubMed]): 2880-2889
        • Schmitz J.
        • Weissenbach M.
        • Haan S.
        • Heinrich P.C.
        • Schaper F.
        SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130.
        J Biol Chem. 2000; 275 ([PubMed]): 12848-12856
        • Croker B.A.
        • Krebs D.L.
        • Zhang J.G.
        • Wormald S.
        • Willson T.A.
        • Stanley E.G.
        • et al.
        SOCS3 negatively regulates IL-6 signaling in vivo.
        Nat Immunol. 2003; 4 ([PubMed]): 540-545
        • Lang R.
        • Pauleau A.L.
        • Parganas E.
        • Takahashi Y.
        • Mages J.
        • Ihle J.N.
        • et al.
        SOCS3 regulates the plasticity of gp130 signaling.
        Nat Immunol. 2003; 4 ([PubMed]): 546-550
        • Lehmann U.
        • Schmitz J.
        • Weissenbach M.
        • Sobota R.M.
        • Hortner M.
        • Friederichs K.
        • et al.
        SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130.
        J Biol Chem. 2003; 278 ([PubMed]): 661-671
        • Wong P.K.
        • Egan P.J.
        • Croker B.A.
        • O'Donnell K.
        • Sims N.A.
        • Drake S.
        • et al.
        SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis.
        J Clin Invest. 2006; 116 ([PubMed]): 1571-1581
        • Fox S.W.
        • Haque S.J.
        • Lovibond A.C.
        • Chambers T.J.
        The possible role of TGF-beta–induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro.
        J Immunol. 2003; 170 ([PubMed]): 3679-3687
        • Zhang X.
        • Alnaeeli M.
        • Singh B.
        • Teng Y.T.
        Involvement of SOCS3 in regulation of CD11c+ dendritic cell–derived osteoclastogenesis and severe alveolar bone loss.
        Infect Immun. 2009; 77 ([PubMed]): 2000-2009
        • Ohishi M.
        • Matsumura Y.
        • Aki D.
        • Mashima R.
        • Taniguchi K.
        • Kobayashi T.
        • et al.
        Suppressors of cytokine signaling-1 and -3 regulate osteoclastogenesis in the presence of inflammatory cytokines.
        J Immunol. 2005; 174 ([PubMed]): 3024-3031
        • Vincent C.
        • Kogawa M.
        • Findlay D.M.
        • Atkins G.J.
        The generation of osteoclasts from RAW 264.7 precursors in defined, serum-free conditions.
        J Bone Miner Metab. 2009; 27: 114-119
        • Deng X.
        • Tamai R.
        • Endo Y.
        • Kiyoura Y.
        Alendronate augments interleukin-1beta release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1.
        Toxicol Appl Pharmacol. 2009; 235 ([PubMed]): 97-104
        • Van Offel J.F.
        • Dombrecht E.J.
        • Bridts C.H.
        • et al.
        Influence of bisphosphonates on the production of pro-inflammatory cytokines by activated human articular chondrocytes.
        Cytokines. 2005; 31: 298-304
        • Takagi K.
        • Takagi M.
        • Kanangat S.
        • Warrington K.J.
        • Shigemitsu H.
        • Postlethwaite A.E.
        Modulation of TNF-alpha gene expression by IFN-gamma and pamidronate in murine macrophages: regulation by STAT1-dependent pathways.
        J Immunol. 2005; 174 ([PubMed]): 1801-1810
        • Hewitt R.E.
        • Lissina A.
        • Green A.E.
        • Slay E.S.
        • Price D.A.
        • Sewell A.K.
        The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins.
        Clin Exp Immunol. 2005; 139 ([PubMed]): 101-111
        • Santini D.
        • Fratto M.E.
        • Vincenzi B.
        • La Cesa A.
        • Dianzani C.
        • Tonini G.
        Bisphosphonate effects in cancer and inflammatory diseases: in vitro and in vivo modulation of cytokine activities.
        Biodrugs. 2004; 18 ([PubMed]): 269-278
        • Pietschmann P.
        • Stohlawetz P.
        • Brosch S.
        • Steiner G.
        • Smolen J.S.
        • Peterlik M.
        The effect of alendronate on cytokine production, adhesion molecule expression, and transendothelial migration of human peripheral blood mononuclear cells.
        Calcif Tissue Int. 1998; 63 ([PubMed]): 325-330
        • Monkkonen J.
        • Simila J.
        • Rogers M.J.
        Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines and nitric oxide from macrophages in vitro.
        Life Sci. 1998; 62 ([PubMed]:PL95-102): PL95-PL102
        • Bauss F.
        • Russell R.G.
        Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing.
        Osteoporos Int. 2004; 15 ([PubMed]): 423-433
        • Bauss F.
        • Wagner M.
        • Hothorn L.H.
        Total administered dose of ibandronate determines its effects on bone mass and architecture in ovariectomized aged rats.
        J Rheumatol. 2002; 29 ([PubMed]): 990-998
        • Barrett J.
        • Worth E.
        • Bauss F.
        • Epstein S.
        Ibandronate: a clinical pharmacological and pharmacokinetic update.
        J Clin Pharmacol. 2004; 44 ([PubMed]): 951-965
        • Vahtsevanos K.
        • Kyrgidis A.
        • Verrou E.
        • Katodritou E.
        • Triaridis S.
        • Andreadis C.G.
        • et al.
        Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw.
        J Clin Oncol. 2009; 27 ([PubMed]): 5356-5362
        • Suri S.
        • Monkkonen J.
        • Taskinen M.
        • Pesonen J.
        • Blank M.A.
        • Phipps R.J.
        • et al.
        Nitrogen-containing bisphosphonates induce apoptosis of Caco-2 cells in vitro by inhibiting the mevalonate pathway: a model of bisphosphonate-induced gastrointestinal toxicity.
        Bone. 2001; 29 ([PubMed]): 336-343
        • Alakangas A.
        • Selander K.
        • Mulari M.
        • Halleen J.
        • Lehenkari P.
        • Mönkkönen J.
        • et al.
        Alendronate disturbs vesicular trafficking in osteoclasts.
        Calcif Tissue Int. 2002; 70 ([PubMed]): 40-47
        • Debidda M.
        • Wang L.
        • Zang H.
        • Poli V.
        • Zheng Y.
        A role of STAT3 in Rho GTPase-regulated cell migration and proliferation.
        J Biol Chem. 2005; 280 ([PubMed]): 17275-17285
        • Scheper M.A.
        • Badros A.
        • Chaisuparat R.
        • Cullen K.J.
        • Meiller T.F.
        Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis.
        Br J Haematol. 2009; 144: 667-676
        • Kyrgidis A.
        Novel hypotheses in the etiopathogenesis of bisphosphonate-related osteonecrosis of the jaws.
        J Oral Maxillofac Surg. 2009; 67 ([PubMed]): 2554
        • Naidu A.
        • Dechow P.C.
        • Spears R.
        • Wright J.M.
        • Kessler H.P.
        • Opperman L.A.
        The effects of bisphosphonates on osteoblasts in vitro.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106 ([PubMed]): 5-13
        • Biewenga J.
        • van der Ende M.B.
        • Krist L.F.
        • Borst A.
        • Ghufron M.
        • van Rooijen N.
        Macrophage depletion in the rat after intraperitoneal administration of liposome-encapsulated clodronate: depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of Freund's adjuvant.
        Cell Tissue Res. 1995; 280 ([PubMed]): 189-196
        • Rezzani R.
        • Rodella L.
        • Ventura R.G.
        Depletion of thymic macrophages in the rat by liposome-encapsulated dichloromethylene diphosphonate.
        Arch Histol Cytol. 1995; 58 ([PubMed]): 427-433
        • Berg J.T.
        • Lee S.T.
        • Thepen T.
        • Lee C.Y.
        • Tsan M.F.
        Depletion of alveolar macrophages by liposome-encapsulated dichloromethylene diphosphonate.
        J Appl Physiol. 1993; 74 ([PubMed]): 2812-2819
        • Pinto A.J.
        • Stewart D.
        • van Rooijen N.
        • Morahan P.S.
        Selective depletion of liver and splenic macrophages using liposomes encapsulating the drug dichloromethylene diphosphonate: effects on antimicrobial resistance.
        J Leukoc Biol. 1991; 49 ([PubMed]): 579-586
        • Van Rooijen N.
        • Kors N.
        • van der Ende M.
        • Dijkstra C.D.
        Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate.
        Cell Tissue Res. 1990; 260: 215-222
        • Banks A.S.
        • Davis S.M.
        • Bates S.H.
        • Myers Jr, M.G.
        Activation of downstream signals by the long form of the leptin receptor.
        J Biol Chem. 2000; 275 ([PubMed]): 14563-14572
        • Kordula T.
        • Bugno M.
        • Goldstein J.
        • Travis J.
        Activation of signal transducer and activator of transcription-3 (STAT3) expression by interferon-gamma and interleukin-6 in hepatoma cells.
        Biochem Biophys Res Commun. 1995; 216 ([PubMed]): 999-1005
        • Zhong Z.
        • Wen Z.
        • Darnell Jr, J.E.
        STAT3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6.
        Science. 1994; 264: 95-98
        • Finbloom D.S.
        • Winestock K.D.
        IL-10 induces the tyrosine phosphorylation of Tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes.
        J Immunol. 1995; 155 ([PubMed]): 1079-1090
        • Nielsen M.
        • Svejgaard A.
        • Skov S.
        • Odum N.
        Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes.
        Eur J Immunol. 1994; 24 ([PubMed]): 3082-3086
        • Tian S.S.
        • Lamb P.
        • Seidel H.M.
        • Stein R.B.
        • Rosen J.
        Rapid activation of the STAT3 transcription factor by granulocyte colony–stimulating factor.
        Blood. 1994; 84 ([PubMed]): 1760-1764
        • Sasaki A.
        • Yasukawa H.
        • Suzuki A.
        • Kamizono S.
        • Syoda T.
        • Kinjyo I.
        • et al.
        Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain.
        Genes Cells. 1999; 4 ([PubMed]): 339-351
        • Rui L.
        • Yuan M.
        • Frantz D.
        • Shoelson S.
        • White M.F.
        SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2.
        J Biol Chem. 2002; 277 ([PubMed]): 42394-42398
        • Reszka A.A.
        • Halasy-Nagy J.M.
        • Masarachia P.J.
        • Rodan G.A.
        Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis.
        J Biol Chem. 1999; 274 ([PubMed]): 34967-34973
        • Green J.R.
        • Clezardin P.
        Mechanisms of bisphosphonate effects on osteoclasts, tumor cell growth, and metastasis.
        Am J Clin Oncol. 2002; 25 ([PubMed]): S3-S9
        • Aksoy S.
        • Abali H.
        • Dincer M.
        • Kilickap S.
        • Gullu I.
        • Tekuzman G.
        Hypocalcemic effect of zoledronic acid or other bisphosphonates may contribute to their antiangiogenic properties.
        Med Hypotheses. 2004; 62 ([PubMed]): 942-944
        • Yang D.M.
        • Chi C.W.
        • Chang H.M.
        • Wu L.H.
        • Lee T.K.
        • Lin J.D.
        • et al.
        Effects of clodronate on cancer growth and Ca2+ signaling of human thyroid carcinoma cell lines.
        Anticancer Res. 2004; 24 ([PubMed]): 1617-1623
        • Costantino L.
        • Barlocco D.
        STAT 3 as a target for cancer drug discovery.
        Curr Med Chem. 2008; 15 ([PubMed]): 834-843
        • Kortylewski M.
        • Jove R.
        • Yu H.
        Targeting STAT3 affects melanoma on multiple fronts.
        Cancer Metastasis Rev. 2005; 24 ([PubMed]): 315-327
        • Kortylewski M.
        • Yu H.
        Role of STAT3 in suppressing anti-tumor immunity.
        Curr Opin Immunol. 2008; 20 ([PubMed]): 228-233
        • Devarajan E.
        • Huang S.
        STAT3 as a central regulator of tumor metastases.
        Curr Mol Med. 2009; 9 ([PubMed]): 626-633
        • Krause A.
        • Scaletta N.
        • Ji J.D.
        • Ivashkiv L.B.
        Rheumatoid arthritis synoviocyte survival is dependent on STAT3.
        J Immunol. 2002; 169 ([PubMed]): 6610-6616
        • Yasukawa H.
        • Ohishi M.
        • Mori H.
        • Murakami M.
        • Chinen T.
        • Aki D.
        • et al.
        IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages.
        Nat Immunol. 2003; 4 ([PubMed]): 551-556
        • Niemand C.
        • Nimmesgern A.
        • Haan S.
        • Fischer P.
        • Schaper F.
        • Rossaint R.
        • et al.
        Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling. 3.
        J Immunol. 2003; 170 ([PubMed]): 3263-3272
        • Liu X.
        • Zhang Y.
        • Yu Y.
        • Yang X.
        • Cao X.
        SOCS3 promotes TLR4 response in macrophages by feedback inhibiting TGF-beta1/SMAD3 signaling.
        Mol Immunol. 2008; 45 ([PubMed]): 1405-1413
        • Kaneda T.
        • Nojima T.
        • Nakagawa M.
        • Ogasawara A.
        • Kaneko H.
        • Sato T.
        • et al.
        Endogenous production of TGF-beta is essential for osteoclastogenesis induced by a combination of receptor activator of NF-kappaB ligand and macrophage-colony–stimulating factor.
        J Immunol. 2000; 165 ([PubMed]): 4254-4263
        • Ruan M.
        • Pederson L.
        • Bradley E.W.
        • Bamberger A.M.
        • Oursler M.J.
        Transforming growth factor-{beta} coordinately induces suppressor of cytokine signaling 3 and leukemia inhibitory factor to suppress osteoclast apoptosis.
        Endocrinology. 2010; 151 ([PubMed]): 1713-1722
        • Sutherland K.A.
        • Rogers H.L.
        • Tosh D.
        • Rogers M.J.
        RANKL increases the level of Mcl-1 in osteoclasts and reduces bisphosphonate-induced osteoclast apoptosis in vitro.
        Arthritis Res Ther. 2009; 11 ([PubMed]): R58

      Linked Article