Advertisement
Oral and maxillofacial surgery Online only article| Volume 115, ISSUE 2, e7-e15, February 2013

Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria

      Objective

      This study aimed to assess NanoBone as a carrier construct for mesenchymal stem cells (MSCs) and platelet-rich growth factor (PRGF).

      Study Design

      In the calvarial bone of 8 mature New Zealand White male rabbits, four 8-mm defects were created. Each defect received one of the following treatments: Group 1, 0.2 mg Nano-hydroxyapatite (HA) granule + 2 mL culture medium; Group 2, 0.2 mg Nano-HA + 1 mL autologous PRGF + 2 mL acellular culture medium; Group 3, 0.2 mg Nano-HA + 2 mL culture medium containing 100,000 autogenous MSCs; Group 4, 0.2 mg Nano-HA + 2 mL culture medium containing 100,000 autogenous MSCs + 1 mL autologous PRGF.

      Result

      Histomorphometric analysis at 6 and 12 weeks demonstrated significantly higher bone formation in group 4 (29.45% and 44.55%, respectively) (P < .05). Bone formation in groups 1, 2, and 3 were as follows: 11.35% and 32.53%, 29.10% and 39.74%, and 25.82% and 39.11%, respectively.

      Conclusions

      NanoBone with MSCs and PRGF seems to be an effective combination for bone regeneration in a rabbit calvaria model.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Buzea C.
        • Pacheco I.
        • Robbie K.
        Nanomaterials and nanoparticles: sources and toxicity.
        Biointerphases. 2007; 2: 1-103
        • Verma S.
        • Domb A.J.
        • Kumar N.
        Nanomaterials for regenerative medicine.
        Nanomedicine (Lond). 2011; 6: 157-181
        • Kubinová S.
        • Syková E.
        Nanotechnologies in regenerative medicine.
        Minim Invasive Ther Allied Technol. 2010; 19: 144-156
        • Abshagen K.
        • Schrodi I.
        • Gerber T.
        • Vollmar B.
        In vivo analysis of biocompatibility and vascularization of synthetic bone grafting substitute Nano Bone.
        J Biomed Mater Res A. 2009; 9: 557-566
        • Wang H.
        • Li Y.
        • Zuo Y.
        • Li J.
        • Ma S.
        • Cheng L.
        Biocompatibility and osteogenesis of biomimetic Nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering.
        Biomaterials. 2007; 28: 3338-3348
        • Woo K.M.
        • Jun J.H.
        • Chen V.J.
        • Seo J.
        • Baek J.H.
        • Ryoo H.M.
        • et al.
        Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization.
        Biomaterials. 2007; 28: 335-343
        • Slater B.J.
        • Kwan M.D.
        • Gupta D.M.
        • Panetta N.J.
        • Longaker M.T.
        Mesenchymal cells for skeletal tissue engineering.
        Expert Opin Biol Ther. 2008; 8: 885-893
        • Phinney D.G.
        • Prockop D.J.
        Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views.
        Stem Cells. 2007; 25: 2896-2902
        • El Tamer M.K.
        • Reis R.L.
        Progenitor and stem cells for bone and cartilage regeneration.
        J Tissue Eng Regen Med. 2009; 3: 327-337
        • Drosse I.
        • Volkmer E.
        • Capanna R.
        • De Biase P.
        • Mutschler W.
        • Schieker M.
        Tissue engineering for bone defect healing: an update on a multi-component approach.
        Injury. 2009; 39: S9-S20
        • Torroni A.
        Engineered bone grafts and bone flaps for maxillofacial defects: state of the art.
        J Oral Maxillofac Surg. 2009; 67: 1121-1127
        • Chatterjea A.
        • Meijer G.
        • van Blitterswijk C.
        • de Boer J.
        Clinical application of human mesenchymal stromal cells for bone tissue engineering.
        Stem Cells Int. 2010; 2010: 215625
        • Liu H.W.
        • Chen C.H.
        • Tsai C.L.
        • Lin I.H.
        • Hsiue G.H.
        Heterobifunctional poly (ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis.
        Tissue Eng. 2007; 13: 1113-1124
        • Yoon S.J.
        • Park K.S.
        • Kim M.S.
        • Rhee J.M.
        • Khang G.
        • Lee H.B.
        Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells.
        Tissue Eng. 2007; 13: 1125-1133
        • Jafarian M.
        • Eslaminejad M.B.
        • Khojasteh A.
        • Mashhadi Abbas F.
        • Dehghan M.M.
        • Hassanizadeh R.
        • et al.
        Marrow-derived mesenchymal stem cells directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105: e14-e24
        • Kim J.
        • Kim I.S.
        • Cho T.H.
        • Lee K.B.
        • Hwang S.J.
        • Tae G.
        • et al.
        Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells.
        Biomaterials. 2007; 28: 1830-1837
        • Castano-Izquierdo H.
        • Alvarez-Barreto J.
        • van den Dolder J.
        • Jansen J.A.
        • Mikos A.G.
        • Sikavitsas V.I.
        Preculture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential.
        J Biomed Mater Res A. 2007; 82: 129-138
        • Yoon E.
        • Dhar S.
        • Chun D.E.
        • Gharibjanian N.A.
        • Evans G.R.
        In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model.
        Tissue Eng. 2007; 13: 619-627
        • Anitua E.
        • Prado R.
        • Orive G.
        A lateral approach for sinus elevation using PRGF technology.
        Clin Implant Dent Relat Res. 2009; 11: e23-e31
        • Anitua E.
        • Prado R.
        • Orive G.
        Bilateral sinus elevation evaluating plasma rich in growth factors technology: a report of five cases.
        Clin Implant Dent Relat Res. 2012; 14: 51-60
        • Aminabadi N.A.
        Plasma rich in growth factors as a potential therapeutic candidate for treatment of recurrent aphthous stomatitis.
        Med Hypotheses. 2008; 70: 529-531
        • Weibrich G.
        • Kleis W.K.
        • Hitzler W.E.
        • Hafner G.
        Comparison of the platelet concentrate collection system with the plasma-rich-in-growth-factors kit to produce platelet-rich plasma: a technical report.
        Int J Oral Maxillofac Implants. 2005; 20: 118-123
        • Yamada Y.
        • Ueda M.
        • Naiki T.
        • Takahashi M.
        • Hata K.
        • Nagasaka T.
        Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration.
        Tissue Eng. 2004; 10: 955-964
        • Yuan J.
        • Cui L.
        • Zhang W.J.
        • Liu W.
        • Cao Y.
        Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate.
        Biomaterials. 2007; 28: 1005-1013
        • Götz W.
        • Gerber T.
        • Michel B.
        • Lossdörfer S.
        • Henkel K.O.
        • Heinemann F.
        Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.
        Clin Oral Implants Res. 2008; 19: 1016-1026
        • Akita S.
        • Fukui M.
        • Nakagawa H.
        • Fujii T.
        • Akino K.
        Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor.
        Wound Repair Regen. 2004; 12: 252-259
        • Lin Y.
        • Tang W.
        • Wu L.
        • Jing W.
        • Li X.
        • Wu Y.
        • et al.
        Bone regeneration by BMP-2 enhanced adipose stem cells loading on alginate gel.
        Histochem Cell Biol. 2008; 129: 203-210
        • Bohnenblust M.E.
        • Steigelman M.B.
        • Wang Q.
        • Walker J.A.
        • Wang H.T.
        An experimental design to study adipocyte stem cells for reconstruction of calvarial defects.
        J Craniofac Surg. 2009; 20: 340-346
        • Shayesteh Y.S.
        • Khojasteh A.
        • Soleimani M.
        • Alikhasi M.
        • Khoshzaban A.
        • Ahmadbeigi N.
        Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106: 203-209
        • Chitsazi M.T.
        • Shirmohammadi A.
        • Faramarzie M.
        • Pourabbas R.
        • Rostamzadeh A.N.
        A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects.
        Med Oral Patol Oral Cir Bucal. 2011; 1: e448-e453
        • Behnia H.
        • Khojasteh A.
        • Soleimani M.
        • Tehranchi A.
        • Khoshzaban A.
        • Keshel S.H.
        • et al.
        Secondary repair of alveolar clefts using human mesenchymal stem cells.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108: e1-e6
        • Behnia H.
        • Khojasteh A.
        • Soleimani M.
        • Tehranchi A.
        • Atashi A.
        Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report.
        J Craniomaxillofac Surg. 2012; 40: 2-7
        • Park K.H.
        • Kim H.
        • Moon S.
        • Na K.
        Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering.
        J Biosci Bioeng. 2009; 108: 530-537
        • Molina-Miñano F.
        • López-Jornet P.
        • Camacho-Alonso F.
        • Vicente-Ortega V.
        Plasma rich in growth factors and bone formation: a radiological and histomorphometric study in New Zealand rabbits.
        Braz Oral Res. 2009; 23: 275-280
        • Khojasteh A.
        • Eslaminejad M.B.
        • Nazarian H.
        Mesenchymal stem cells enhance bone regeneration in rat calvaria size defects more than platelet-rich plasma.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106: 356-362
        • Szpalski C.
        • Barr J.
        • Wetterau M.
        • Saadeh P.B.
        • Warren S.M.
        Cranial bone defects: current and future strategies.
        Neurosurg Focus. 2010; 29: E8
        • Liu G.
        • Li Y.
        • Sun J.
        • et al.
        In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood derived mesenchymal stem cells on partially demineralized bone matrix.
        Tissue Eng A. 2009; 16: 971