Advertisement

Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region

Published:October 02, 2012DOI:https://doi.org/10.1016/j.oooo.2012.07.436

      Objective

      The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms.

      Study Design

      Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance.

      Results

      Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects.

      Conclusions

      Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Miracle A.C.
        • Mukherji S.K.
        Conebeam CT of the head and neck, part 2: clinical applications.
        AJNR Am J Neuroradiol. 2009; 30: 1285-1292
        • Shimamoto H.
        • Kakimoto N.
        • Fujino K.
        • Hamada S.
        • Shimosegawa E.
        • Murakami S.
        • et al.
        Metallic artifacts caused by dental metal prostheses on PET images: a PET/CT phantom study using different PET/CT scanners.
        Ann Nucl Med. 2009; 23: 443-449
        • Nahmias C.
        • Lemmens C.
        • Faul D.
        • Carlson E.
        • Long M.
        • Blodgett T.
        • et al.
        Does reducing CT artifacts from dental implants influence the PET interpretation in PET/CT studies of oral cancer and head and neck cancer?.
        J Nucl Med. 2008; 49: 1047-1052
        • Boas F.E.
        • Fleischmann D.
        Evaluation of two iterative techniques for reducing metal artifacts in computed tomography.
        Radiology. 2011; 259: 894-902
        • Tohnak S.
        • Mehnert A.J.
        • Mahoney M.
        • Crozier S.
        Dental CT metal artefact reduction based on sequential substitution.
        Dentomaxillofac Radiol. 2011; 40: 184-190
        • Abdoli M.
        • Ay M.R.
        • Ahmadian A.
        • Dierckx R.A.
        • Zaidi H.
        Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm.
        Med Phys. 2010; 37: 6166-6177
        • Bechara B.B.
        • Moore W.S.
        • McMahan C.A.
        • Noujeim M.
        Metal artefact reduction with cone beam CT: an in vitro study.
        Dentomaxillofac Radiol. 2012; 41: 248-253
        • Bechara B.
        • McMahan C.
        • Geha H.
        • Noujeim M.
        Evaluation of a cone beam CT artefact reduction algorithm.
        Dentomaxillofac Radiol. 2012; 41: 422-428
        • Liu P.T.
        • Pavlicek W.P.
        • Peter M.B.
        • Spangehl M.J.
        • Roberts C.C.
        • Paden R.G.
        Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress.
        Skeletal Radiol. 2009; 38: 797-802
        • Joemai R.M.
        • de Bruin P.W.
        • Veldkamp W.J.
        • Geleijns J.
        Metal artifact reduction for CT: development, implementation, and clinical comparison of a generic and a scanner-specific technique.
        Med Phys. 2012; 39: 1125-1132
        • Veldkamp W.J.
        • Joemai R.M.
        • van der Molen A.J.
        • Geleijns J.
        Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT.
        Med Phys. 2010; 37: 620-628
        • Zhang Y.
        • Zhang L.
        • Zhu X.R.
        • Lee A.K.
        • Chambers M.
        • Dong L.
        Reducing metal artifacts in cone-beam CT images by preprocessing projection data.
        Int J Radiat Oncol Biol Phys. 2007; 67 ([Merops: removed graphic #1]): 924-932
        • Prell D.
        • Kyriakou Y.
        • Beister M.
        • Kalender W.A.
        A novel forward projection-based metal artifact reduction method for flat-detector computed tomography.
        Phys Med Biol. 2009; 54: 6575-6591
        • Rinkel J.
        • Dillon W.P.
        • Funk T.
        • Gould R.
        • Prevrhal S.
        Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods.
        J Comput Assist Tomogr. 2008; 32: 621-629
        • Moon S.G.
        • Hong S.H.
        • Choi J.Y.
        • Jun W.S.
        • Kang H.G.
        • Kim H.S.
        • et al.
        Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-dimensional quantitative assessment.
        J Comput Assist Tomogr. 2008; 32: 630-633
        • Bal M.
        • Spies L.
        Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering.
        Med Phys. 2006; 33: 2852-2859
        • Fleischmann D.
        • Boas F.E.
        Computed tomography—old ideas and new technology.
        Eur Radiol. 2011; 21: 510-517
        • Pan X.
        • Sidky E.Y.
        • Vannier M.
        Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?.
        Inverse Probl. 2009; 25: 1230009
        • Rashed E.A.
        • Kudo H.
        Statistical image reconstruction from limited projection data with intensity priors.
        Phys Med Biol. 2012; 57: 2039-2061
        • Wang G.
        • Frei T.
        • Vannier M.W.
        Fast iterative algorithm for metal artifact reduction in X-ray CT.
        Acad Radiol. 2000; 7: 607-614
        • Gutman F.
        • Gardin I.
        • Delahaye N.
        • Rakotonirina H.
        • Hitzel A.
        • Manrique A.
        • et al.
        Optimisation of the OS-EM algorithm and comparison with FBP for image reconstruction on a dual-head camera: a phantom and a clinical 18F-FDG study.
        Eur J Nucl Med Mol Imaging. 2003; 30: 1510-1519
        • Hwang D.
        • Zeng G.L.
        Convergence study of an accelerated ML-EM algorithm using bigger step size.
        Phys Med Biol. 2006; 51: 237-252
        • Xu F.
        • Xu W.
        • Jones M.
        • Keszthelyi B.
        • Sedat J.
        • Agard D.
        • Mueller K.
        On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs.
        Comput Methods Programs Biomed. 2010; 98: 261-270
        • Kondo A.
        • Hayakawa Y.
        • Dong J.
        • Honda A.
        Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region.
        Oral Radiol. 2010; 26: 61-65
        • Dong J.
        • Kondo A.
        • Abe K.
        • Hayakawa Y.
        Successive iterative restoration applied to streak artifact reduction in X-ray CT image of dento-alveolar region.
        Int J Comput Assist Radiol Surg. 2011; 6: 635-640
        • Dong J.
        • Kondo A.
        • Abe K.
        • Hayakawa Y.
        • Kannenberg S.
        • Kober C.
        Metal artifact reduction by ordered subset-expectation maximization reconstruction algorithm on X-ray computed tomography image.
        (Accessed May 2, 2012. Japanese)