Advertisement

MicroRNA-375 as a biomarker for malignant transformation in oral lesions

Published:August 06, 2016DOI:https://doi.org/10.1016/j.oooo.2016.07.022

      Objective

      Malignant transformation of oral premalignant lesions is the key process in the progression to oral squamous cell carcinoma (OSCC). Previously, we identified miR-7 and miR-21 as candidate oncogenes and miR-375 and miR-494 as candidate tumor suppressors in OSCC. We aim to evaluate these microRNAs as biomarkers of malignant transformation in oral premalignant lesions.

      Study Design

      Formalin-fixed, paraffin-embedded samples from progressive premalignant lesions and paired sequential OSCC tumors at the same site were obtained from same patients (n = 31). Total RNA was extracted and analyzed for microRNA levels using real-time polymerase chain reaction.

      Results

      MiR-375 expression in progressive lesions was clearly lower than in nonprogressive control lesions (average eightfold difference, P = .0004). Furthermore, the expression of miR-375 decreased significantly after the progression from premalignant lesion to OSCC (P < .0001). Receiver operating characteristic curve analysis revealed that miR-375 was able to differentiate between progressive and nonprogressive premalignant lesions (P < .0001).

      Conclusions

      MiR-375 downregulation in oral premalignant lesions is associated with a higher risk of malignant transformation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Messadi D.V.
        Diagnostic aids for detection of oral precancerous conditions.
        Int J Oral Sci. 2013; 5: 59-65
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J Clin. 2016; 66: 7-30
        • Cervigne N.K.
        • Machado J.
        • Goswami R.S.
        • et al.
        Recurrent genomic alterations in sequential progressive leukoplakia and oral cancer: drivers of oral tumorigenesis?.
        Hum Mol Genet. 2014; 23: 2618-2628
        • Saintigny P.
        • El-Naggar A.K.
        • Papadimitrakopoulou V.
        • et al.
        DeltaNp63 overexpression, alone and in combination with other biomarkers, predicts the development of oral cancer in patients with leukoplakia.
        Clin Cancer Res. 2009; 15: 6284-6291
        • Bremmer J.F.
        • Brakenhoff R.H.
        • Broeckaert M.A.
        • et al.
        Prognostic value of DNA ploidy status in patients with oral leukoplakia.
        Oral Oncol. 2011; 47: 956-960
        • Nahid M.A.
        • Satoh M.
        • Chan E.K.L.
        MicroRNA in TLR signaling and endotoxin tolerance.
        Cell Mol Immunol. 2011; 8: 388-403
        • Ceribelli A.
        • Yao B.
        • Dominguez-Gutierrez P.R.
        • Nahid M.A.
        • Satoh M.
        • Chan E.K.L.
        MicroRNAs in systemic rheumatic diseases.
        Arthritis Res Ther. 2011; 13: 229
        • Ceribelli A.
        • Nahid M.A.
        • Satoh M.
        • Chan E.K.L.
        MicroRNAs in rheumatoid arthritis.
        FEBS Lett. 2011; 585: 3667-3674
        • Clague J.
        • Lippman S.M.
        • Yang H.
        • et al.
        Genetic variation in MicroRNA genes and risk of oral premalignant lesions.
        Mol Carcinog. 2010; 49: 183-189
        • Friedman R.C.
        • Farh K.K.H.
        • Burge C.B.
        • Bartel D.P.
        Most mammalian mRNAs are conserved targets of microRNAs.
        Genome Res. 2009; 19: 92-105
        • Caramuta S.
        • Egyhazi S.
        • Rodolfo M.
        • et al.
        MicroRNA expression profiles associated with mutational status and survival in malignant melanoma.
        J Invest Dermatol. 2010; 130: 2062-2070
        • Li X.
        • Zhang Y.
        • Zhang Y.
        • Ding J.
        • Wu K.
        • Fan D.
        Survival prediction of gastric cancer by a seven-microRNA signature.
        Gut. 2010; 59: 579-585
        • Giovannetti E.
        • Funel N.
        • Peters G.J.
        • et al.
        MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity.
        Cancer Res. 2010; 70: 4528-4538
        • Acunzo M.
        • Romano G.
        • Wernicke D.
        • Croce C.M.
        MicroRNA and cancer—a brief overview.
        Adv Biol Regul. 2015; 57: 1-9
        • Krichevsky A.M.
        • Gabriely G.
        miR-21: a small multi-faceted RNA.
        J Cell Mol Med. 2009; 13: 39-53
        • Nielsen B.S.
        • Jorgensen S.
        • Fog J.U.
        • et al.
        High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients.
        Clin Exp Metastasis. 2011; 28: 27-38
        • Cervigne N.K.
        • Reis P.P.
        • Machado J.
        • et al.
        Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma.
        Hum Mol Genet. 2009; 18: 4818-4829
        • Jung H.M.
        • Phillips B.L.
        • Patel R.S.
        • et al.
        Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer.
        J Biol Chem. 2012; 287: 29261-29272
        • Jung H.M.
        • Patel R.S.
        • Phillips B.L.
        • et al.
        Tumor suppressor miR-375 regulates MYC expression via repression of CIP2 A coding sequence through multiple miRNA-mRNA interactions.
        Mol Biol Cell. 2013; 24 (S1-S7): 1638-1648
        • Liborio-Kimura T.N.
        • Jung H.M.
        • Chan E.K.L.
        miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer.
        Oral Oncol. 2015; 51: 151-157
        • Yan J.W.
        • Lin J.S.
        • He X.X.
        The emerging role of miR-375 in cancer.
        Int J Cancer. 2014; 135: 1011-1018
        • Siow M.Y.
        • Ng L.P.
        • Vincent-Chong V.K.
        • et al.
        Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma.
        Oral Dis. 2014; 20: 345-351
        • Napier S.S.
        • Speight P.M.
        Natural history of potentially malignant oral lesions and conditions: an overview of the literature.
        J Oral Pathol Med. 2008; 37: 1-10
        • Mithani S.K.
        • Mydlarz W.K.
        • Grumbine F.L.
        • Smith I.M.
        • Califano J.A.
        Molecular genetics of premalignant oral lesions.
        Oral Dis. 2007; 13: 126-133
        • Dionne K.R.
        • Warnakulasuriya S.
        • Zain R.B.
        • Cheong S.C.
        Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory.
        Int J Cancer. 2015; 136: 503-515
        • Reibel J.
        Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics.
        Crit Rev Oral Biol Med. 2003; 14: 47-62
        • Mishra P.
        MicroRNAs as promising biomarkers in cancer diagnostics.
        Biomark Res. 2014; 2: 19
        • Chen Y.-T.
        • Kitabayashi N.
        • Zhou X.K.
        • Fahey III, T.J.
        • Scognamiglio T.
        MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma.
        Mod Pathol. 2008; 21: 1139-1146
        • Huang Y.
        • Yang Y.B.
        • Zhang X.H.
        • Yu X.L.
        • Wang Z.B.
        • Cheng X.C.
        MicroRNA-21 gene and cancer.
        Med Oncol. 2013; 30: 376
        • Sicard F.
        • Gayral M.
        • Lulka H.
        • Buscail L.
        • Cordelier P.
        Targeting miR-21 for the therapy of pancreatic cancer.
        Mol Ther. 2013; 21: 986-994
        • Kawakita A.
        • Yanamoto S.
        • Yamada S.
        • et al.
        MicroRNA-21 promotes oral cancer invasion via the Wnt/beta-catenin pathway by targeting DKK2.
        Pathol Oncol Res. 2014; 20: 253-261
        • Esquela-Kerscher A.
        • Slack F.J.
        Oncomirs—microRNAs with a role in cancer.
        Nat Rev Cancer. 2006; 6: 259-269
        • Ding L.
        • Xu Y.
        • Zhang W.
        • et al.
        MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2.
        Cell Res. 2010; 20: 784-793
        • Luo J.
        • Wu J.
        • Li Z.
        • et al.
        miR-375 suppresses IGF1 R expression and contributes to inhibition of cell progression in laryngeal squamous cell carcinoma.
        Biomed Res Int. 2014; 2014: 374598
        • Wang F.
        • Li Y.
        • Zhou J.
        • et al.
        miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1.
        Am J Pathol. 2011; 179: 2580-2588
        • Yu H.
        • Jiang L.
        • Sun C.
        • et al.
        Decreased circulating miR-375: a potential biomarker for patients with non-small-cell lung cancer.
        Gene. 2014; 534: 60-65
        • Komatsu S.
        • Ichikawa D.
        • Takeshita H.
        • et al.
        Prognostic impact of circulating miR-21 and miR-375 in plasma of patients with esophageal squamous cell carcinoma.
        Expert Opin Biol Ther. 2012; 12: S53-S59
        • Harris T.
        • Jimenez L.
        • Kawachi N.
        • et al.
        Low-level expression of miR-375 correlates with poor outcome and metastasis while altering the invasive properties of head and neck squamous cell carcinomas.
        Am J Pathol. 2012; 180: 917-928
        • Yang M.Y.
        • Lin P.M.
        • Liu Y.C.
        • et al.
        Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells.
        PLoS One. 2012; 7
        • Jung H.M.
        • Phillips B.L.
        • Chan E.K.
        miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6 AP, CIP2 A, and 14-3-3 zeta.
        Mol Cancer. 2014; 13: 80
        • Jung H.M.
        • Benarroch Y.
        • Chan E.K.L.
        Anti-cancer drugs reactivate tumor suppressor miR-375 expression in tongue cancer cells.
        J Cell Biochem. 2015; 116: 836-843