Objectives
To evaluate the distribution of metal artifacts from the exomass in small field-of-view
(FOV) cone beam computed tomography (CBCT) scans.
Study Design
An image phantom was scanned by using 3 CBCT units. Metal objects were positioned
in the exomass, and additional CBCT scans were obtained. Mean gray values were obtained
from 16 homogeneous areas and the standard deviation was calculated to quantify gray
level inhomogeneity according to distinct zones of the FOV: total area and outer,
inner, right, left, and mid-zones. The discrepancy between each zone and the total
area was calculated to compare different CBCT units. Mean gray, gray level inhomogeneity,
and discrepancy values were separately assessed by using analysis of variance (ANOVA)
and Tukey's test (α = 0.05).
Results
Overall, the mean gray values were significantly lower in the inner zone, and the
gray level inhomogeneity values were significantly higher in the inner and mid-zones
irrespective of the presence of metal objects in the exomass. The 3 CBCT units presented
significantly different discrepancy values in most conditions.
Conclusions
The distribution of metal artifacts from the exomass follows the inherent gray value
dispersion of CBCT images, with greater inhomogeneity in the inner zone of the FOV.
This is exacerbated when metal objects are in the exomass.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Oral Surgery, Oral Medicine, Oral Pathology and Oral RadiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Basic principles of cone beam computed tomography.Dent Clin North Am. 2014; 58: 463-484
- What is cone-beam CT, and how does it work?.Dent Clin North Am. 2008; 52: 707-730
- Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography.Oral Surg Oral Med Oral Pathol Oral Radiol. 2013; 116: 105-119
- Influence of object location in cone beam computed tomography (NewTom 5 G and 3 D Accuitomo 170) on gray value measurements at an implant site.Oral Radiol. 2014; 30: 153-159
- Cone-beam computed tomography for detecting vertical root fractures in endodontically treated teeth: a systematic review.J Endod. 2016; 42: 177-185
- Reduction of scatter-induced image noise in cone beam computed tomography: effect of field of view size and position.Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2016; 121: 188-195
- Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3 G cone beam computed tomography unit.Dentomaxillofac Radiol. 2008; 37: 305-308
- Analysis of intensity variability in multislice and cone beam computed tomography.Clin Oral Implants Res. 2011; 22: 873-879
- The basics of maxillofacial cone beam computed tomography.Semin Orthod. 2009; 15: 2-13
- Metallic materials in the exomass impair cone beam CT voxel values.Dentomaxillofac Radiol. 2018; 2720180011
- Are metal artefact reduction algorithms effective to correct cone beam CT artefacts arising from the exomass?.Dentomaxillofac Radiol. 2019; 4820180290
- Metal artefact reduction with cone beam CT: an in vitro study.Dentomaxillofac Radiol. 2012; 41: 248-253
- Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system.Dentomaxillofac Radiol. 2008; 37: 365-374
- Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: an in vitro study.Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107: 420-425
- Is application of a quantitative CT technique helpful for quantitative measurement of bone density using dental cone-beam CT?.Oral Radiol. 2016; 32: 9-13
- Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3 De cone-beam computed tomography scanners.Imaging Sci Dent. 2014; 44: 279-285
- Magnitude of cone beam CT image artifacts related to zirconium and titanium implants: impact on image quality.Dentomaxillofac Radiol. 2018; 1020180021
- Influence of acquisition parameters on the magnitude of cone beam computed tomography artifacts.Dentomaxillofac Radiol. 2018; 4720180151
- Intensity of artefacts in cone beam CT examinations caused by titanium and glass fibre-reinforced composite implants.Dentomaxillofac Radiol. 2019; 4820170471
- Evaluation of the effects of positioning and configuration on contrast-to-noise ratio in the quality control of a 3 D Accuitomo 170 dental CBCT system.Dentomaxillofac Radiol. 2016; 4520150430
- Evaluation of a metal artefact reduction tool on different positions of a metal object in the FOV.Dentomaxillofac Radiol. 2017; 4620160366
- Influence of exposure factors on the variability of CBCT voxel values: a phantom study.Dentomaxillofac Radiol. 2014; 43 (Erratum in: Dentomaxillofac Radiol. 2014;43:20149002)20140128
- Quantification of metal artefacts on cone beam computed tomography images.Clin Oral Implants Res. 2013; 24: 94-99
- Metal and motion artefacts by cone beam computed tomography (CBCT) in dental and maxillofacial study.Radiol Med. 2015; 120: 618-626
- Cone-beam CT in paediatric dentistry: DIMITRA project position statement.Pediatr Radiol. 2018; 48: 308-316
Article info
Publication history
Published online: February 10, 2020
Accepted:
January 10,
2020
Received in revised form:
December 11,
2019
Received:
October 19,
2019
Identification
Copyright
© 2020 Elsevier Inc. All rights reserved.